Einleitung
E60 S85 - Der neue M5

Vorwort

Der neue BMW M5 kommt im Oktober 2004 in den Handel. Er wird der stärkste M5 aller Zeiten sein und der Erste, dem man dies auch auf den ersten Blick ansieht.

Sein optischer Auftritt ist jedoch eine Spur weniger dezent als der seiner Vorgänger: Front- und Heckschürzen sind gegenüber dem Vorgängermodell noch etwas markanter geworden und neben Heckspoiler, 4-Rohr-Auspuffanlage und 19"-Rädern verraten die mittlerweile M typischen Seitenkiemen den M5 jetzt auch von der Seite auf den ersten Blick als einen solchen.

Highlight des neuen M5 ist natürlich der von BMW-Williams-F1 abgeleitete V10-Motor, der erst bei 8.250 U/min abgeregelt und somit nicht nur für Formel-1-Leistung, sondern auch für Formel-1-Sound sorgt.

Trotz dieser Merkmale bleibt der M5 ein Understatement-Produkt. Sein Äußeres wirkt kräftig, aber immer noch zurückhaltend. Die vom Serien-E60 gewohnte Alltagstauglichkeit geht nirgendwo verloren.

Das Wichtigste in Kürze

10-Zylinder-Formel 1-Motor

Der V10-Vollaluminium-Saugmotor mit 51 Hubraum stellt grundsätzlich 400 PS zur Verfügung. Per Powerknopf auf der Mittelkonsole kann diese Leistung auf über 500 PS gesteigert werden.

Bedplate-Aufbau sorgt - wie in der Formel 1 - für Vibrationsarmut und Grundsteifigkeit. Die Motorsteuerung erfolgt per MS_S65 von Siemens, die Klopfregelung über Ionenstrom-Technologie.

Ebenfalls aus der Formel 1 stammt das Konzept der 2-Scheiben-Trockenkupplung, geschaltet wird mit einem dem Hochdrehzahlkonzept angepassten 7-Gang-SMG III-Gangbox.

Trotz dieser imposanten Leistungsdaten erfüllt der E60 M5 die Abgasnorm nach EU4.

Karosserie und Fahrwerk

Markante Front- und Heckschürzen, gepaart mit Seitenschweller und einer kraftvollen Heckspoiler differenzieren den M5 deutlich vom Serien-E60. Ein Heckdiffusor - ebenfalls ein Formel-1-Abgeber - sorgt für zusätzlichen Abtrieb auf der Hinterachse.

Die neue DSC des M5 erlaubt Freunden des kontrollierteren Drifts per Knopfdruck deutlich mehr Querkraft. Die Hinterachssperre regelt nicht fix mit 25 % sondern variabel.

Bedienung und Individualisierung

Technische Daten und Wettbewerber

<table>
<thead>
<tr>
<th></th>
<th>BMW M5 (E60)</th>
<th>Mercedes E55 AMG</th>
<th>Audi RS6 plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Länge (mm)</td>
<td>4855</td>
<td>4818</td>
<td>4858</td>
</tr>
<tr>
<td>Breite (mm)</td>
<td>1846</td>
<td>1822</td>
<td>1850</td>
</tr>
<tr>
<td>Höhe (mm)</td>
<td>1469</td>
<td>1412</td>
<td>1425</td>
</tr>
<tr>
<td>Radstand (mm)</td>
<td>2889</td>
<td>2854</td>
<td>2759</td>
</tr>
<tr>
<td>Spur vorn (mm)</td>
<td>1580</td>
<td>1583</td>
<td>1578</td>
</tr>
<tr>
<td>Spur hinten (mm)</td>
<td>1566</td>
<td>1551</td>
<td>1587</td>
</tr>
<tr>
<td>Leergewicht (kg)</td>
<td>1755</td>
<td>1835</td>
<td>1880</td>
</tr>
<tr>
<td>Zuladung (kg)</td>
<td>545</td>
<td>525</td>
<td>540</td>
</tr>
<tr>
<td>Gepäckraumvolumen (l)</td>
<td>500</td>
<td>530</td>
<td>455</td>
</tr>
<tr>
<td>Motor / Ventile pro Zylinder</td>
<td>V10 / 4</td>
<td>V8 / 3</td>
<td>V8 / 5</td>
</tr>
<tr>
<td>Hubraum (ccm)</td>
<td>4999</td>
<td>5439</td>
<td>4172</td>
</tr>
<tr>
<td>Motorleistung (PS) bei Drehzahl (U/min)</td>
<td>507</td>
<td>476</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>7750</td>
<td>6100</td>
<td>6000 - 6400</td>
</tr>
<tr>
<td>Nenndrehmoment (Nm) bei Drehzahl (U/min)</td>
<td>520</td>
<td>700</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>6100</td>
<td>2650 - 4000</td>
<td>1950 - 6000</td>
</tr>
<tr>
<td>Abregelkreuzzahl (U/min)</td>
<td>8,250</td>
<td>6,250</td>
<td>6,600</td>
</tr>
<tr>
<td>Getriebe</td>
<td>7-Gang-</td>
<td>5-Gang-</td>
<td>5-Gang-</td>
</tr>
<tr>
<td></td>
<td>SMG-Getriebe</td>
<td>Automatik</td>
<td>Automatik</td>
</tr>
<tr>
<td>Kraftstoffverbrauch (l/100 km EU)</td>
<td>?</td>
<td>12,9</td>
<td>14,6</td>
</tr>
<tr>
<td>Kraftstofftankinhalt / Reichweite (l / km)</td>
<td>70 / ?</td>
<td>80 / 620</td>
<td>82 / 561</td>
</tr>
<tr>
<td>Räder und Reifen</td>
<td>vorn: 255/40 R19 auf 8,5 J x 19</td>
<td>vorn: 245/40 R18 auf 8 J x 18</td>
<td>vorn und hinten: 255/35 R19 auf 9 J x 19</td>
</tr>
<tr>
<td></td>
<td>hinten: 285/35 R19 auf 9,5 J x 19</td>
<td>hinten: 265/35 R18 auf 9 J x 18</td>
<td>hinten: 255/35 R19 auf 9 J x 19</td>
</tr>
<tr>
<td>0 - 100 km/h (s)</td>
<td>4,6</td>
<td>4,7</td>
<td>4,6</td>
</tr>
<tr>
<td>V max (km/h)</td>
<td>250</td>
<td>250</td>
<td>280</td>
</tr>
<tr>
<td>(abgeregt) (abgeregt)</td>
<td>250 (abgeregt)</td>
<td>250 (abgeregt)</td>
<td>280 (abgeregt)</td>
</tr>
<tr>
<td>Verkaufspreis (Euro)</td>
<td>?</td>
<td>90.422,-</td>
<td>101.050,-</td>
</tr>
</tbody>
</table>
Einleitung
S85B50 Motor

Einleitung

Aus diesem Grund wurde für den Motorblock eine Bedplate-Konstruktion gewählt. Auch der Zylinderkopf ist einteilig, um eine größtmögliche Steifigkeit zu erzielen und Dichtflächen zu reduzieren.

Der Ventiltrieb und besonders die Kastenstöbel mit hydraulischem Ventilspielausgleich (HVA) wurden gewichts- undreibungsoptimiert.

Die hohe Dynamik und Spontanität des Motors erfordert eine sehr schnelle Verstellung der VANOS. Dies wird durch einen Öldruck von 115 bar sowie neuen Proportionalventilen und VANOS-Getrieben erreicht.

Ebenfalls sind für das schnelle Ansprechen des Motors die Einzeldrosselklappen erforderlich, die seitenspezifisch betätigt werden.

Um die hohe Leistung an das Getriebe übertragen zu können, ist der S85 mit einer Zweischneckenkupplung und Zweimassenschwungrad (ZMS) ausgerüstet.

Technische Daten

<table>
<thead>
<tr>
<th>Motorbezeichnung</th>
<th>S85B50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauart</td>
<td>V10, 90°</td>
</tr>
<tr>
<td>Hubraum</td>
<td>4.999 cm(^3)</td>
</tr>
<tr>
<td>Bohrung</td>
<td>92 mm</td>
</tr>
<tr>
<td>Hub</td>
<td>75,2 mm</td>
</tr>
<tr>
<td>Leistung</td>
<td>373 kW/507 PS bei 7,750 (\text{1/min})</td>
</tr>
<tr>
<td>Drehmoment</td>
<td>520 Nm bei 6.100 (\text{1/min})</td>
</tr>
<tr>
<td>Drehzahl</td>
<td>8.250 (\text{1/min})</td>
</tr>
<tr>
<td>Gewicht</td>
<td>240 kg</td>
</tr>
</tbody>
</table>
Bei konventionellen Kurbelgehäusen sind die unteren Lager der Kurbelwelle als einzelne Lagerbrücken ausgeführt.
Um die Kolbenkräfte sicher aufnehmen zu können, sind diese "Hauptlagerbrücken" aus Grauguss,
Die Lagerbrücken sind vorgegossen und werden nach der ersten Montage zusammen
mit dem Kurbelgehäuse bearbeitet.
Beim Kurbelgehäuse mit Bedplate ist das Kurbelgehäuse in Höhe der
Kurbelwellenachse in Kurbelgehäuseoberteil und Kurbelgehäuseunterteil, dem so
genannten Bedplate, geteilt.
Bei geteiltem Kurbelgehäuse mit Bedplate
sind die Lager der Kurbelwelle Bestandteil eines eigenen stabilen Rahmens, dem
Bedplate.
Das Bedplate wird zusammen mit dem
Kurbelgehäuse bearbeitet und nach der
Kurbelwellenmontage an das
Kurbelgehäuseoberteil montiert.

Merkmale
- Durch das kompakte Bedplate wird das
 Kurbelgehäuse zur Ölwanne hin zusätzlich
 verstellt. Dadurch wird der Gesamtmotor
 auch insgesamt stiffer und
 widerstandsfähiger gegen Verwölbungen.
- Durch die zusätzliche Versteifung des
 Kurbelgehäuses verbessert sich auch die
 Motorakustik.
- Das Bedplate bietet die Möglichkeit,
 zusätzliche Baugruppen im unteren
 Motorbereich unterzubringen.
- Das Bedplate ermöglicht eine einfache und
 schnelle Montage der
 Kurbelwellenlaufbaugruppe.

Zur Sicherstellung einer ordnungsgemäßen Funktion der Kurbelwelle ist die Einhaltung der vorgeschriebenen Reihenfolge der Bedplate-Verschraubung zwingend erforderlich. Abweichungen davon führen zu Motorschäden und Undichtigkeiten im Bedplate/Kurbelgehäuse.

Das Bedplate ermöglicht eine einfache und schnelle Montage der Kurbelwellenlagerung.

Das Flüssigdichtmittel wird nach der kompletten Verschraubung des Bedplates an das Kurbelgehäuse über die Einspritzdüsen in die Nut eingequetscht.
Bedplate-Abdichtung

An den Austrittsstellen wird mit Primer das Flüssigdichtmittel zum Aushärten gebracht.

Kurbeltrieb

Zylinderkopf

Die einteilige Ausführung des Zylinderkopfes bietet im Wesentlichen Vorteile hinsichtlich der Steifigkeit, aber auch bzgl. der Reduzierung von Dichtflächen. Im Kopf sind sowohl der Leerlaufkühlkanal als auch der Sekundärluftkanal integriert.

Steuervtrieb

Je eine Steuerkette mit eigenem Kettenspanner treibt die jeweilige Einlassnockenwelle an (Primär-Steuervtrieb). Der Antrieb von der Einlassnockenwelle zur Auslassnockenwelle erfolgt durch einen Zahnrrieb (Sekundär-Steuervtrieb).

Die Hydrostößel des S85 sind aus Gewichts- und Reibungsgründen von der Form an die Kastenstößel, wie sie von Rennmotoren bekannt sind, angelehnt. Da sie sich im Zylinderkopf nicht drehen dürfen, sind in den Stößeln Vordrehnadeln eingepressst, die in den, im Zylinderkopf eingfrästen Nuten laufen.
VANOS

Über zwei Druckleitungen gelangt das unter Druck stehende Motoröl zu den beiden VANOS-Stelleinheiten und zum Druckspeicher.

An den Stelleinheiten sind je zwei Proportionalventile verbaut, die den Öldruck stufenlos variieren. Gegenüber den früher verwendeten Wegeventilen bieten Proportionalventile kürzere Verstellzeiten und eine höhere Betriebssicherheit.

Sowohl Auslass- als auch Einlassnockenwelle werden, wie vom S62 bekannt, auch beim S85 durch die VANOS verstellte. Die Einlassnockenwellen weisen einen Verstellweg von 60° KW und die Auslassnockenwellen 37° KW auf.
<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Auslass</td>
<td>4</td>
<td>Filter 50 µm</td>
</tr>
<tr>
<td>B</td>
<td>Einlass</td>
<td>5</td>
<td>Rückschlagventil (optional)</td>
</tr>
<tr>
<td>C</td>
<td>früh</td>
<td>6</td>
<td>Proportionalventil (3/2-Wege)</td>
</tr>
<tr>
<td>D</td>
<td>spät</td>
<td>7</td>
<td>Verstellkolben Druckspeicher</td>
</tr>
<tr>
<td>1</td>
<td>Motorölpumpe (1-5 bar)</td>
<td>8</td>
<td>Druckspeicherabsperrenventil</td>
</tr>
<tr>
<td>2</td>
<td>Filter 80 µm</td>
<td>9</td>
<td>Druckspeicher</td>
</tr>
<tr>
<td>3</td>
<td>Hochdruckpumpe 115 bar (HDP)</td>
<td>10</td>
<td>Druckbegrenzungsventil HDP</td>
</tr>
</tbody>
</table>

VANOS Hydraulikeinheiten (Aktuatoren)

Der Verstellweg der Kolben in der VANOS-Stelleinheit wird durch ein, in die Kettenräder integriertes stufenloses Getriebe in eine Drehbewegung umgesetzt.
Riementrieb

11 - Riementrieb über ganz Seitenbreite

12 - Hauptriementrieb
Vom Haupttrieb angetrieben werden die Wasserpumpe und der Generator. Der Antrieb erfolgt über die Riemenscheibe an der Kurbelwelle.

13 - Nebenriementrieb
Der Nebenriementrieb umfasst die Lenkhilfepumpe und den Klimakompressor. Der Antrieb erfolgt über die Riemenscheibe an der Kurbelwelle.
Kühlkreislauf

Durch den zweiteiligen Kühler sind drei Entlüftungsoffnungen und zwei Entlüftungsleitungen zur einwandfreien Selbstentlüftung notwendig.

Der Abgriff für den Heizungswärmetauscher ist an den Zylinderkopfen hinten angebracht. Der Heizungsrücklauf und die Leitung zum Ausgleichsbehälter werden vor der Wasserpumpe mit einem T-Stück zusammengefasst.
Ölkreislauf Schmierung

Die Kurbelgehäuseentlüftung erfolgt jeweils über einen Zykloabscheider im Sammler für Ansaugluft. Die Rücklaufleitung vom Ölabadscheider sowie die Kondensatrücklaufleitungen von den Sammlern für Ansaugluft werden am Kurbelgehäuse auf der Zylinderseite 6-10 in den Ölsumpf geleitet.
Sammler für Ansaugluft

Der S85 hat für jede Zylinderseite einen eigenen Sammler für Ansaugluft. Über Schläuche werden die Sammler für Ansaugluft mit den Drosselklappenstutzen verbunden.

Leerlaufsystem

Die Drosselklappen werden zueinander eingestellt (wie S54). Die Synchronisation der Zylinderseiten zueinander, sowie die Einstellung des Vollastanschlags entfällt. Die erforderlichen Korrekturen werden von der Motorsteuerung übernommen (siehe Kapitel Motorsteuerung MS_S65).

Sekundärluftsyste

Die Sekundärluft wird über unterdruckgesteuerte Membranventile an den Zylinderköpfen in die Auslasskanäle eingeblasen.

Der Unterdruck zur Ansteuerung der Sekundärluftpumpe wird aus dem Zylinderkopf Zylinderseite 6-10 entnommen und mit dem Elektro-Umschaltventil geschaltet. Ein Rückschlagventil verhindert das Rücksaugen in den Zylinderkopf.

Die Leitungsführung der Unterdruckleitungen vom Elektro-Umschaltventil zu den Sekundärluftpumpen verläuft im Kabelbaumschacht.

Index	**Erklärung**
1 | Membranventil
2 | Sekundärluftsteller (nur US-Ausführung)
3 | Sekundärluftpumpe

Systemkomponenten
S85B50

Grundmotor und Anbauteile

Kurbelgehäuseoberteil
Das Kurbelgehäuseoberteil ist aus einer Aluminiumgusslegierung (GK AlSi7Cu4Mg T5) hergestellt. Die Laufflächen der Zylinder sind nach dem Alusil-Verfahren bearbeitet.

Bedplate
Das Bedplate besteht aus einem Aluminiumrahmen (G AlSi7Mg0,3 T6), in dem Graugusslagerbrücken (GGG 60) eingegossen sind. Nach dem Vergießen wird das Bauteil für 8 Stunden bei 525 °C gegläut, anschließend in 70 °C warmem Wasser abgeschreckt und 5 Stunden bei 165 °C warm ausgelagert.

Kurbelgehäuse
Das Kurbelgehäuse ist aus Bedplate und Kurbelgehäuseoberteil zusammengesetzt. Die Abdichtung erfolgt, wie schon beim N42, durch eine Flüssigdichtung in einer Nut, die im Kurbelgehäuseoberteil eingefräst ist.
Um ein Verspannen des Kurbelgehäuses bei der Montage von Kurbelgehäuseoberteil und Bedplate zu vermeiden, ist die Montagefolge unbedingt einzuhalten:
1. Positionieren des Bedplates diagonal an den Lagerstählen 1 und 6 mittels zwei Schrauben M8x94.
2. Bedplate mit den zehn M8x94 Schrauben anheften
3. Anziehen der Schrauben M11x115 mit Setzmoment
4. Anziehen der Schrauben M11x115 mit Drehwinkel
5. Anziehen der Schrauben M8x94 mit Setzmoment
6. Anziehen der Schrauben M8x94 mit vorgeschriebenem Drehmoment
7. Anziehen der Schrauben M8x60, M8x35 und M8x25 mit vorgeschriebenem Drehmoment.

Zylinderkopf
Der Zylinderkopf ist aus einer Aluminiumgusslegierung (GK AlSiMgCu0,5 wa) hergestellt.
Kurbelwelle/Hauptlager

Die Kurbelwelle ist aus dem hochfesten Stahl 42CrMo4 geschmiedet und wiegt 21,63 kg. Nach dem Schleifen der Lagerstellen wird die Welle nitrocarburiert.

An der Kurbelwange des ersten Hauptlagers sind die Farbkodes der Hauptlagerschalen eingeprägt.

Pleuel

Die einseitige Reduzierung des Anlauf-Bundes pro Pleuel um 1,5 mm dient dazu, den Seitenversatz um insgesamt 3 mm zu verkürzen und somit auch die gesamte Motorlänge um 3 mm zu verringern. Die Einbaurichtung wird am Pleuel durch zwei Erhebungen gekennzeichnet.
Der vorgeschriebene Arbeitsablauf beim Verschrauben der Pleuelschrauben ist zwingend einzuhalten. Das dreimalige Anziehen mit gleichem Anzugswinkel bewirkt in den Pleuelschrauben einen gewissen Trainingseffekt (Kaltverfestigung), was zu einer erhöhten Vorspannkraft und gleichzeitig zu einer minimierten Vorspannkraftstreueung führt.

Kolben
Der Kolben ist aus Aluminium (Al Si 12 Cu Ni Mg) gegossen. Da ein Aluminiumkolben ein ungünstiger Reibpartner für einen Aluminiumzylinder darstellt, ist der Kolbschaft mit einer galvanischen Eisenbeschichtung (Ferrostan), die eine Schichtstärke von ca. 10 μm aufweist, versehen. Eine ca. 2 μm-Zinnenschicht dient darüber hinaus als Einlaufschicht.

Nockenwelle
Die neunfach gelagerte Nockenwelle ist aus Hartschalenguß (GGG 60) hohlgegossen. Das Geberrad für den Nockenwellensensor ist beim S85 erstmals an der Nockenwelle angegossen. Für die Zentralverschraubung der VANOS-Getriebe ist in den Nockenwellen ein M12x1 Gewinde vorhanden.

Ventilfedern
Für den S85 kommen konische Ventilfedern zum Einsatz. Für Einlass und Auslass werden die gleichen Federn verwendet.

Ventilkeile

Darüber hinaus wird die Kraft der Ventilfeder nicht formschlüssig über die Rillen im Ventilschaft übertragen, sondern kraftschlüsigg. Dies ist bei einem Schaftdurchmesser von 5 mm wesentlich materialschonender.
Kastenstoßel

Kastenstoßel erlauben gegenüber Tassenstoßel eine wesentlich höhere Balligkeit. Dadurch ergibt sich eine geringere Auswanderung des Berührpunktes von Nocken und Stoßel. Eine Alternative dazu stellt das Hohlschleifen der Nocken dar, was mit einem erhöhten Fertigungsaufwand verbunden ist, oder ein Tassenstoßel mit wesentlich größerem Durchmesser und somit um ca. 20 g mehr Gewicht pro Stoßel. Bezüglich der bewegten Massen ist nach wie vor der Ventiltrieb des S54 unübertroffen, jedoch stellt der Kastenstoßel des S85 das Optimum im Zielkonflikt Wartungsfreundlichkeit, Fertigungstechnik und bewegte Massen dar.

Ventile

Sowohl Auslass- als auch Einlassventil sind Vollschaffventile mit einem Schaftdurchmesser von 5 mm. Die Auslassventile sind aus dem Ventilstahl X45CrSi9-3 hergestellt. Der Einlassventilschaft besteht ebenfalls aus X45CrSi9-3 und ist mit dem Ventilteiler aus NiCr20TiAl reibverschweißt.

Um den Füllgrad zu verbessern, ist am Auslassventil im Bereich des Ventilsitzes nicht wie üblich noch ein zylindrischer Auslauf angeformt, sondern die 70° Schräge läuft spitz aus. Aus diesem Grund ist das Einlassventil sehr vorsichtig zu handhaben, da jegliches "Anstoßen" unweigerlich eine Beschädigung der Kante nach sich zieht.

VANOS-Hochdruckpumpe

In der Hochdruckpumpe sorgt ein Einspeisventil für eine konstante Ölmengenzufuhr im gesamten Motoröldruckbereich.

Index	**Erklärung**
1 | Motoröl
2 | Ölzulauf Hochdruckpumpe
3 | Motoröl wird durch Stator zugeführt und von den Kolben angesaugt
4 | Motoröl wird verdichtet und mit 115 bar zurück in den Stator abgegeben
5 | Stator

Bei Druckspitzen im Hochdrucksystem öffnet sich das in der Hochdruckpumpe integrierte Druckbegrenzungsventil und gibt so einen Bypass zur Ölwanne frei.

Das unter einem Druck von 115 bar stehende Öl wird über drei Druckleitungen zu den beiden VANOS-Stelleinheiten und zum Druckspeicher geleitet.
VANOS-Hochdrucksystem

VANOS-Aktuatoren

Auslassverstellung in Richtung spät. Die Verstellkolben sind als doppelwirkende Zylinder aufgebaut und im Verstellweg für Ein- und Auslassnockenwellen unterschiedlich.

Zur Verstellung der VANOS-Getriebe gibt es für jede Zylinderseite eine eigene VerstellEinheit, die so genannten Aktuatoren. Versorgt werden diese mit Hochdrucköl aus der VANOS-Hochdruckpumpe.

Da Einlassnockenwelle und Auslassnockenwelle aufgrund der Zahnradverbindung gegenläufig drehen, erfolgt beim Ausfahren des Kolbens die Einlassverstellung in Richtung früh und die

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verstellrichtung früh</td>
</tr>
<tr>
<td>2</td>
<td>Einlass</td>
</tr>
<tr>
<td>3</td>
<td>Steckkontakte</td>
</tr>
<tr>
<td>4</td>
<td>Auslass</td>
</tr>
<tr>
<td>5</td>
<td>Verstellrichtung spät</td>
</tr>
</tbody>
</table>

Index Erklärung

1 Hub
Der Hub an der Auslassseite von maximal 14,25 mm entspricht 18,5° NW = 37° KW. Der Hub an der Einlassseite von maximal 25,25 mm entspricht 30° NW = 60° KW.

Der Aktuator (Verstellungseinheit) ist mit der Außen- und Innenhülse durch die Getriebeverschraubung verbunden. Bei der Verstellung werden Innen- und Außenhülse aus dem Getriebe herausgezogen bzw. hineingeschoben.

Dabei dreht sich die Innenhülse durch die Schrägenverzahnung am "festen" Antriebsrad (Steuerkettentrieb). Aufgrund der kraftschlüssigen Schraubverbindung mit der Außenhülse verdreht sich diese mit. Die Außenhülse verdreht nun durch eine weitere Schrägenverzahnung das Lager für das Antriebsrad und somit die mit der Zentralschraube verbundene Nockenwelle.

Montiert werden die Getriebe in Grundstellung, d. h. auseinander gezogen. Die Verstellung der Nockenwellen erfolgt durch Zusammenschieben der Getriebe.

Zur Unterstützung der Rückstellbewegung sind Antriebsrad und Lager für Antriebsrad mit einer Drehfeder verbunden.
Bei der Montage der Aktuatoren sind die Getriebeschrauben nur leicht angezogen. Somit erfolgt beim Anschließen der Aktuatoren an den Zylinderkopf (damit leichte Einschubbewegung des Getriebes) kein Kraftübergang von der Außenhülse zur Innenhülse. Durch das "feststehende" Antriebsrad dreht sich die Außenhülse in Motordrehrichtung. Gleichzeitig dreht sich die Innenhülse durch das "feststehende" Lager für Antriebsrad gegen die Motordrehrichtung.

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ringfeder</td>
</tr>
<tr>
<td>2</td>
<td>Drehfeder</td>
</tr>
<tr>
<td>3</td>
<td>Verriegelungsschraube</td>
</tr>
</tbody>
</table>
VANOS-Druckspeicher

Der Druckspeicher ist mit 40 bar Stickstoff vorgespannt. Der Ölaum wird vom Gasraum durch einem Kolben getrennt.

Der Arbeitsdruck der VANOS beträgt 115 bar. Beim Ausschalten des Motors wird das Absperrventil am Druckspeicher geschlossen.

Im Druckspeicher verbleibt ein Druck von 80 bar, der beim nächsten Motorstart ohne Verzögerung bereitgestellt wird.

Bitte beachten Sie, dass für Arbeiten am Druckspeicher unbedingt die Reparaturanleitung zu beachten ist.

Ölpumpen

Die Ölpumpe wird über eine Kette von der VANOS-Hochdruckpumpe angetrieben.

Im Ölumpengehäuse verbergen sich zwei Ölpumpen. Zum einen eine Duozentrische Pumpe, die das Öl vom vorderen Ölsumpf in den hinteren fördert. Zum anderen aus einer regelbaren Pendelscheibepumpe, die aus dem hinteren Sumpf das Öl absaugt und mit einem variablen Druck von bis zu 5 bar in den ÖlfILTER fördert.

Die Leistung der Pumpe wird durch die Exzentrizität des Pendelschiebers bestimmt. Läuft dieser mittig zum Rotor, findet keine Förderleistung mehr statt, da alle Pumpenkammern gleich groß sind.

22 - Minimale Förderleistung

23 - Maximale Förderleistung
Elektrische Ölpumpen

Ölspritzdüsen
Zur Kolbenbodenkühlung kommen beim S85 Doppelspritzdüsen zum Einsatz. Die Ölspritzdüse ist mit einem integrierten Druckregelventil ausgestattet.

Ölfiltergehäuse
Im Kopf des Ölfiltergehäuses sitzt ein Thermostat, der den Weg zum Motorölkühler freigibt.

Abgaskrümmer
Der S85 hat für jede Zylinderseite einen 5 in 1 Abgaskrümmer mit motornahem Katalysator. Die Rohre des Krümmer sind aus Edelstahl (X 15 Cr Ni Si 20-12) gefertigt und weisen eine Wandstärke von 0,3 mm auf.
Sammler für Ansaugluft

Der S85 hat für jede Zylinderseite einen eigenen Sammler für Ansaugluft, der mit Schlauchschellen auf den Drosselklappenstutzen montiert ist.

Der Aufbau des Sammlers für Ansaugluft ist dem des S54 ähnlich. So sind auch beim S85 die Schalen aus PA66 hergestellt jedoch durch Spiegelschweißen miteinander verbunden.

Ansauggeräuschedämpfer

Zum Erreichen der maximalen Leistung benötigt der S85 alle vier Luftwege. Aus Bauraumgründen war ein großer Querschnitt nicht zu verwirklichen. Zudem ist durch die oberen Ansaugwege die geforderte Wassertüpfel der M5 gegeben.

Kühler
Der Kühler des S85 ist in einen oberen und einen unteren Wasserkasten unterteilt. Der untere Wasserkasten dient der Kühlung des Kühlmittels von der Zylinderseite 1-5, der obere der Kühlung der Zylinderseite 6-10. Durch diese Zwei teilung konnte der Druckabfall im Kühler von ca. 3 bar auf ca. 1,4 bar gesenkt werden.

Thermostat
Inhalt
DME MS_S65

Einleitung
1

Systemübersicht
3

Systemkomponenten
5

Funktionen
13

Servicehinweise
21
Einleitung
DME MS_S65

Einleitung

Der Motor S85B50 kann 373 kW (507 PS) und ein maximales Drehmoment von 520 Nm entwickeln.

Um die volle Leistungsentfaltung bis zu einer maximalen Drehzahl von 8.250 \(\frac{1}{2} \) \text{min}^{-1} \text{unter Einhaltung der Emissionsgesetze zu gewährleisten, kam erstmals die auf der MS_S54 basierenden, weiterentwickelte Motorsteuerung MS_S65 von Siemens zum Einsatz.}

Durch die Verwendung der MS_S65 mit ihren erweiterten Funktionen wurde es möglich, diesen Motor mit dem Hochdrehzahl-Konzept präzise zu steuern.

Der S85B50 erfüllt die Abgasnormen
- Europa: EU4
- USA: US-LEV 2
- Japan: Japan LEV 2000
Systemübersicht
DME MS_S65

Die MS_S65 ist eine Weiterentwicklung der MS_S54 (MS_S54 HP, M3 CSL), die zur Steuerung des S54 im E46 M3 eingesetzt wurde.

Für den Einsatz der Motorsteuerung S65 am S85B50 wurden zusätzlich Funktionen implementiert, die erstmalig bei BMW zur Anwendung kommen:

- Zweistufige Wählbarkeit der maximalen Motorleistung
- Querkraftabhängige Steuerung der elektrischen Ölabsaugpumpen
- Bedarfsgerechte Kraftstoffförderung mit variablen Kraftstoffdruck
- Klopf- und Aussetzerkennung durch Ionenstrom-Technologie
Systemkomponenten
DME MS_S65

DME-Steuergerät Siemens MS_S65

Wie beim E60 Serienfahrzeug übernimmt auch die Motorsteuerung im E60 M5, zusammen mit dem intelligenten Batteriesensor, IBS und dem Generator, die Aufgabe des Energiemanagements und des BOS Bedarfsorientierten Service.

Ein Motorsteuergerät regelt beide Zylinderseiten.

Die Zündreihenfolge ist:
1-6-5-10-2-7-3-8-4-9.

Die MS_S65 ist mit 6 Steckmodulen (in zwei Kompaktstecker kombiniert) ausgerüstet, die nach Funktionen gruppiert sind.

Die Zündendstufe sowie die Klopf- und Aussetzererkennung wurde in das Ionenstromsteuergerät ausgelagert.

Auswertung des Querbeschleunigungssignals vom DSC für die Ölabsaugung.

Datenschnittstellen:
1. PT-CAN
2. Leerlaufsteller/SMG-CAN
3. Drosselklappen CAN (DK-CAN)
4. BSD BUS (Generator und IBS)
5. Schnittstelle zum CAS

Heißfilm-Luftmassenmesser (HFM)

Zur Bestimmung der angesaugten Luftmasse und deren Temperatur wird Bankweise je ein Heißfilm-Luftmassenmesser vom Hersteller Bosch, HFM 5.0 mit CL Bypass, herangezogen.

Der HFM ist als Steckmodul ausgeführt und ist im Ansauggeräuschdämpfer positioniert.
Kraftstoffdrucksensor

Der Kraftstoffdrucksensor befindet sich im Radhaus vorne links.
Dieser Sensor misst den aktuellen Kraftstoffdruck und gibt diesen Wert weiter an die Motorsteuerung.

Elektrische Kraftstoffpumpe (EKP)

Der Kraftstofftank beinhaltet zwei Kraftstoffpumpen, die als Flügelzellenpumpen ausgeführt sind.
Beide Pumpen wurden in der rechten Tankhälfte integriert.
Der Kraftstofffilter sowie der Druckregler sind in der linken Tankhälfte positioniert.

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Druckregler</td>
<td>3</td>
<td>EKP 1 und 2</td>
</tr>
<tr>
<td>2</td>
<td>Kraftstofffilter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 - Kraftstofftank mit Komponenten
EKP-Modul
Das EKP-Modul befindet sich wie beim E60 Serie (Achtzylinder und Diesel) im Kofferraum hinten rechts. Die Leistungsendstufe dieses Steuergerätes wurde an die zusätzliche Pumpe und der abgeänderten Regel-Logik angepasst.

Ionenstromsteuergerät (ISS)
Die beiden Ionenstromsteuergeräte des Herstellers Helbako sind vom auf den Zylinderkopfhauben der zugeordneten Zylinderseite montiert.

Kurbelwellensensor
Der Sensor ist ein induktiver Sensor.

Nockenwellensensor
Jede Nockenwelle wird durch einen individuellen Halbsensor überwacht. Das Geberrad ist an die Nockenwellen angegossen.

Ölzustandssensor
Der Ölzustandssensor (QLT) konnte vom bereits bestehenden N62 übernommen werden, jedoch wurde eine Softwareanpassung durchgeführt.
Öldruckschalter

Das Signal dieses Schalters geht in die DME ein und wird dort bewertet. Im Falle einer Abweichung vom vorgegebenen Sollwert sendet die DME eine Botschaft an das CID, das dann eine Check-Control-Meldung zur Anzeige bringt.

Ölabsaugpumpe

Am S85B50 wurden zwei voneinander unabhängige Rückförderpumpen verbaut. Anders wie beim Vorgängermodell werden diese Pumpen erst ab einer auftretenden Fliehkraft von 0,8 G angesteuert.

Die Pumpen saugen das im Zylinderkopf verbleibende Motoröl ab und führen es der Ölwanne zu.

Die DME wird vom DSC via PT-CAN über die aktuelle Querkraft informiert.
Leerlaufsteller

Die beiden LL-Steller sind als Drosselklappensteller ausgeführt und befinden sich im V-Raum.

Die Kommunikation der Leerlaufsteller mit der DME erfolgt über den LLS/SMG-CAN.

Die Initialisierung der Leerlaufsteller wird automatisch bei Motorstillstand und Zündung EIN durchgeführt.
Drosselklappen-Stellmotor

Jeweils fünf mechanisch gekoppelte Drosselklappen einer Zylinderbank werden über einen Stellmotor (EDR-Steller) bewegt.

Jeder EDR-Steller besteht aus einem Stellmotor mit Getriebe und der Steuerelektronik. Über die Steuerelektronik erfolgt die Kommunikation mit der DME über CAN, die Regelung und Ansteuerung des Stellmotors und die internen Diagnosefunktionen.
Drosselklappensensor

Pro Zylinderseite werden zwei Potenziometer angesteuert:

- Ein Potenziometer für die Lageregelung. Dieser wird vom EDR-Satellit versorgt und eingelesen. Der eingelesene Wert wird per CAN an die DME übertragen. Bei Ausfall wird die betroffene Einheit abgeschaltet.

- Ein weiterer Potenziometer ist für die Überwachung zuständig. Dieser wird von der DME versorgt und eingelesen.

Die beiden Drosselklappensensoren 1 und 2 sind jeweils als doppelte Hallsensoren ausgeführt. Diese vier Sensoren erfassen die Position (Winkel) der Drosselklappen von Zylinderseite 1 und 2.

Dabei besitzen die beiden in einem Gehäuse integrierten Hallsensoren eine invertierte Kennlinie (eine steigend, eine fallend).

Der Sensor mit steigender Kennlinie wird vom jeweiligen EDR-Steller zur Lageregelung verwendet.

Der redundante Sensor mit fallender Kennlinie wird von der DME zur Überwachung der Drosselklappenregelung genutzt.

Sekundärluftpumpe

Die elektrische Sekundärluftpumpe ist wartungsfrei. Der integrierte Filter unterliegt keinem Wechselintervall.

Angesteuert wird die Pumpe von der DME. Die Förderleistung liegt immer bei 100 % und wird nicht geregelt.
Mini HFM für Sekundärluftsystem

Ein Mini HFM misst die Sekundärluftmasse im Ansaugrohr der Sekundärluftpumpe. Diese Überwachung wurde aufgrund der immer niedrigeren Abgasgrenzwerte erforderlich.

Regelsonde

Als Regelsonden wurden die bereits bekannten Lambdasonden LSU 4.9 mit stetiger Kennlinie verwendet.

Monitorsonde

Die Monitorsonden sind die bereits bekannten Sprungsonden LSH 25 in Lochausführung.

Abgastemperatursensor

Die Abgastemperatursensoren sind als NTC-Messelemente ausgeführt. Der Sensor kann bis zu einer Temperatur von ca. 1200 °C erfassen.

Druckspeicher-Absperrventil (VANOS)

Das Absperrventil gewährleistet, dass der gespeicherte Motorölhochdruck nach dem Abstellen des Motors im Druckspeicher gehalten wird. Das Ventil ist somit stromlos geschlossen und wird von der DME nach Anforderung geöffnet. (keine proportionale Öffnung).
Funktionen
DME MS_S65

Motordrehratemregelung

Der EDR-Satellit dient der Regelung des Motordrehmoments. Hauptteilgröße ist die dem Motor zugeführte Frischluftmenge (Luftkraftstoffgemisch), die über die Stellung der 10 Einzeldrosselklappen und der beiden Leerlaufdrosselklappen variiert werden kann.

Für die Ansteuerung ist der Zehnzylinder V-Motor in zwei identische Blöcke (Zylinderseiten) mit jeweils fünf Zylindern aufgeteilt. Jede Zylinderseite verfügt über eine Leerlaufdrosselklappe und fünf Einzeldrosselklappen.

Die fünf Einzeldrosselklappen sind pro Zylinderseite mechanisch miteinander gekoppelt.

Die Stellung der Leerlaufdrosselklappe und die Stellung der fünf Einzeldrosselklappen wird jeweils pro Zylinderseite mit zwei Aktuatoren geregelt (eine Leerlaufsteller (LLS) und ein Einzeldrosselkappenregler (EDR)).

Das gesamte Ansaugluftsystem besteht damit aus vier Stellmotoren für die Drosselklappen.

Aus Sicherheitsgründen verfügt jede Drosselklappe über eine Rückstellfeder, die beim Ausfall des jeweiligen Stellers die Drosselklappen schließt.

Alle vier Stellmotoren werden von der zentralen Motorsteuerung (DME) gesteuert.

Die DME errechnet aus den Eingangsgrößen, wie z. B. Fahrerbedienung, Fahrerassistenz, Kühlmitteltemperatur und aus Eingriffen anderer Steuergeräte (DSC, SMG, ...) das Soll-Lastsignal für beide Zylinderseiten. Aus diesem Soll-Lastsignal ermittelt die DME eine Sollposition für die Drosselklappen (Soll-Winkel). Dabei wird zunächst das Potenzial der Leerlaufdrosselklappen ausgeschöpft, bevor die Einzeldrosselklappen, über die eine wesentlich größere Luftmenge angesaugt werden kann, geöffnet werden.

Um die Motorleistung entsprechend den Vorgaben einzustellen, gibt die DME den Stellern einen Sollwert für die Drosselklappenwinkel vor, den die Steller einregeln.

Für die Regelung der Einzeldrosselklappen steht dem Steller 1 (EDR 1) einer der beiden Hallensorsen des Drosselklappensensors 1 (DKG 1) zur Verfügung.

Der zweite Hallensor des DKG 1 wird direkt von der DME versorgt und ausgelesen und dient nur der Überwachung der Regelung des EDR-Stellers (Analog Steller 2 (EDR 2)).

Die beiden Leerlaufsteller verfügen für die Regelung des Drosselklappenwinkels der Leerlaufdrosselklappen über einen internen inkrementellen Winkelgeber. Der Wert dieses Sensors wird über den CAN-Bus an die DME zurückgemeldet.

Um die Einstellung der Drosselklappen zu überprüfen, ermittelt die DME das momentane Ist-Lastsignal aus dem direkt ausgelesenen Drosselklappendynamo und den Rückmeldungen der LLS-Steller. Dieses Lastsignal wird über die Signale der beiden Halbfilm-Luftmassenmessers, die angesaugten Luftmengen pro Zylinderseite messen, plausibilisiert.

Bedarfsorientierte Kraftstoffförderung mit variablem Druck

Um dem Motor Kraftstoff mit variablem Druck entsprechend dem Lastzustand zur Verfügung stellen zu können, steuert die DME die Kraftstoffpumpen mittels des EKP-Moduls so an, dass sich der gewünschte Solldruck unabhängig von der aktuell verbrauchten Kraftstoffmenge einstellt.

Der Solldruck variiert zwischen 3 bis 6 bar und kann über ein Testmodul anhand der Sollkurve überprüft werden. Eine manuelle Messung ist hier nicht mehr erforderlich. Der Kraftstoffregelkreis besteht aus folgenden Komponenten:

- Elektrische Kraftstoffpumpen (EKP)
 - EKP-Modul
 - Tank mit Komponenten und Leitungssystem
 - Kraftstoffdrucksensor
 - Digitale Motor Elektronik (DME) mit der Steuerlogik
Ansteuerung der Kraftstoffpumpen

Die EKP 1 wird von der DME über das EKP bedarfsgerecht geregelt.

Die PWM-Schnittstelle ist eine Eindrahtschnittstelle, über die die DME das EKP-Modul ansteuert und somit die Förderleistung der EKP verändern kann.

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aktivierung</td>
</tr>
<tr>
<td>2</td>
<td>Spannungsversorgung</td>
</tr>
<tr>
<td>3</td>
<td>Steuerlogik EKP 1</td>
</tr>
<tr>
<td>4</td>
<td>Steuerlogik EKP 2</td>
</tr>
<tr>
<td>5</td>
<td>Endstufe EKP 1</td>
</tr>
<tr>
<td>6</td>
<td>Endstufe EKP 2</td>
</tr>
</tbody>
</table>

Diese Toleranz gilt für die gesamte Lebensdauer des EKP-Moduls. Bei Erreichen eines Tastverhältnisses von 100 % am Eingang wird zusätzlich die zweite EKP zugeschaltet.
Ionenstrommessung

Für eine abgas- und verbrauchsoptimierte Motorsteuerung ist es erforderlich, in jedem Motorbetriebszustand möglichst genau die Verbrennungsgemisch-Zusammensetzung zu kennen.

Eine Maßnahme dazu ist die so genannte Ionenstrommessung. Die Ionenstrommessung wird zur Klopffregelung und Laufunruheerkennung (Aussetzererkennung) verwendet.

Die Auslösung des Zündfunks erfolgt über das Motorsteuergerät.

Unmittelbar nach dem Ende des Zündfunks wird zwischen den Elektroden der Zündkerze eine geringe Spannung angelegt und ein resultierender Strom (Ionenstrom) gemessen.

Messung und Auswertung des Ionenstromes erfolgen durch das Ionenstromsteuergerät und der DME.

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zündkerze</td>
</tr>
<tr>
<td>2</td>
<td>Motorsteuergerät</td>
</tr>
<tr>
<td>3</td>
<td>Ionenstromsteuergerät</td>
</tr>
</tbody>
</table>

Der Verlauf der Verbrennung im Brennraum kann durch den Brennraum- oder Zylinderdruckverlauf dargestellt werden.
Ionenstrom-Darstellung

Der Ionenstromverlauf ist direkt abhängig vom Zylinderdruck und den, sich im Zylinder befindlichen Ionen.

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ionenstrommaximum durch Induktion der Zündspule</td>
</tr>
<tr>
<td>2</td>
<td>Ionenstrommaximum auf Grund Entflammung (Flammfront direkt im Zündkerzenbereich)</td>
</tr>
<tr>
<td>3</td>
<td>Ionenstrom verläuft abhängig zum Druckverlauf</td>
</tr>
</tbody>
</table>

Im Allgemeinen gilt:
Verbrennung schlecht => niedriger Zylinderdruck
Verbrennung gut => hoher Zylinderdruck

Durch die beim Klopfen entstehenden Druck spitzen im Brennraum werden zusätzlich freie Ionen abgespalten, sodass es zu einer Änderung des Ionenstromverlaufes kommt.

Die Messung und Auswertung des Ionenstromes erfolgt im Ionenstromsteuergerät.
Die daraus entstehenden Korrekturen der Motorsteuerung erfolgen im Motorsteuergerät.
Ionenstromverlauf im Vergleich

<table>
<thead>
<tr>
<th>Index</th>
<th>Erklärung</th>
<th>Index</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zündzeitpunkt</td>
<td>5</td>
<td>kein Klopfen</td>
</tr>
<tr>
<td>2</td>
<td>Zündende</td>
<td>6</td>
<td>Zeit</td>
</tr>
<tr>
<td>3</td>
<td>Ionenstrom</td>
<td>7</td>
<td>Klopfen</td>
</tr>
<tr>
<td>4</td>
<td>Flammfrontsignal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 - Normale und klopfend: Verbrennung
Wählbarkeit der maximalen Motorleistung

Der POWER-Taster ist ein Masseschalter, über den die maximale Motorleistung durch einmaliges Drücken freigegeben werden kann.

Die anwählbaren Modi durch den Taster sind P400 und P500.

Der Modus P500 Sport, der auch eine progressivere Fahrpedalkennlinie abruft, kann nur im "M-Drive" Menu konfiguriert und über den "M"-Taster am Multifunktionslenkrad abgerufen werden.

Beim Neustart wird automatisch die P400 Stellung aufgerufen.
Drosselklappensteller
Die beiden EDR-Steller sind einzeln ersetzbar. Die Anschläge müssen nach Ersatz initialisiert werden, indem die Kl. 15 für mindestens 1 min aktiv geschaltet sein muss, ohne dass ein Motorstart erfolgt. Die Synchronisation zueinander wird von der DME ausgeführt.

Einzeldrosselklappe

Programmierung der DME
Das Steuergerät kann bis zu 63 x nachprogrammiert werden.

VANOS-Druckspeicher
Für Arbeiten am VANOS-System ist unbedingt die Reparaturanleitung zu beachten!

Ionenstrom-Technologie
Für den Tausch der Zündkerzen muss die Reparaturanleitung beachtet werden, da die Zündkerzen Bestandteil des Ionenstrommesskreises ist.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Active Cruise Control</td>
</tr>
<tr>
<td>BSD</td>
<td>Bitserielle Datenschnittstelle</td>
</tr>
<tr>
<td>CAN</td>
<td>Controller Area Network</td>
</tr>
<tr>
<td>CAS</td>
<td>Car Access System</td>
</tr>
<tr>
<td>CID</td>
<td>Central Information Display</td>
</tr>
<tr>
<td>DME</td>
<td>Digitale Motor Elektronik</td>
</tr>
<tr>
<td>DSC</td>
<td>Dynamische Stabilitäts Control</td>
</tr>
<tr>
<td>EDR</td>
<td>Elektrischer Drosselklappensteiler</td>
</tr>
<tr>
<td>EKP</td>
<td>Elektrische Kraftstoffpumpe</td>
</tr>
<tr>
<td>HFM</td>
<td>Heißfilm-Luftmassenmesser</td>
</tr>
<tr>
<td>HVA</td>
<td>Hydraulischer Ventilspiel-Ausgleich</td>
</tr>
<tr>
<td>LLS</td>
<td>Leerlaufsteller</td>
</tr>
<tr>
<td>QLT</td>
<td>Ölzustandssensor</td>
</tr>
<tr>
<td>SMG</td>
<td>Sequentielles M-Getriebe</td>
</tr>
</tbody>
</table>